
GPU Debugging
Making it easy
Allinea DDT – CUDA Enabled

allinea

Interesting Times ...

- Processor counts growing rapidly
- GPUs entering HPC
- Large hybrid systems imminent
- But what happens when software doesn't work?

Allinea Software

HPC tools company since 2001

- DDT Debugger for MPI, threaded/OpenMP and scalar
- OPT Optimizing and profiling tool for MPI and non-MPI
- DDTLite Parallel Debugging Plugin for Microsoft Visual Studio 2008 SP1 and above

Large European and US customer base

- Ease of use means tools get used and bugs get fixed quickly
- Scalable interface easy to use at 1 or 100,000s of cores

Looking to the future

- World's first Petascale debugger
- GPU product available as pre-release

Some Clients and Partners

Over 200 universities

Major research centres

ANL, EPCC, CEA, IDRIS, Juelich, NERSC, ORNL,

Aviation and Defense

- Airbus, AWE, Dassault, DLR, EADS, ...

Energy

CGG Veritas, IFP, PGS, Total, ...

EDA

Cadence, Synopsys, ...

Climate and Weather

UK Met Office, IFREMER, Proudman, ...

Hybrids are today's hottest topic

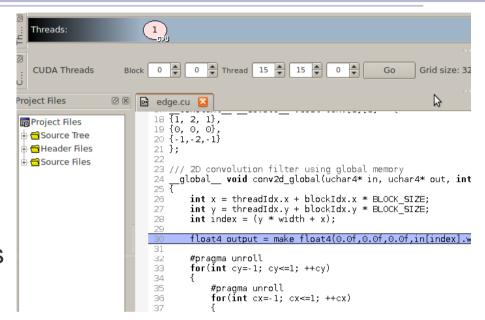
- Technology is moving quickly compilers, SDKs, hardware
- NVIDIA CUDA leads in tool support

Many lines of code need rewriting for GPUs

- Memory hierarchy
- Explicit data transfer between host and accelerator
- Unusual execution model -
 - Kernels, thread blocks, warps, synchronization points
- Massively fine-grained parallel model
- Inevitable that we need to debug!

Introducing DDT for CUDA

- The first graphical debugger for NVIDIA CUDA
 - Simple and easy to use
 - As easy as debugging ordinary code
- Core debugging capability
 - Breakpoints
 - Stepping warps
 - Viewing data and thread stacks
- Supports advanced features
 - CUDA memcheck memory debugging for CUDA
- More to come!


CUDA Threads in DDT

Run the code

- Browse source
- Set breakpoints
- Stop at a line of CUDA code
- Stops once for each scheduled collection of blocks

Select a CUDA thread

- Examine variables and shared memory
- Step a warp

Easy to understand scale

View all extant threads in parallel stack view

- At one glance, see all GPU and CPU threads together
- Links with thread selection
- Pick a tree node to select one of the CUDA threads at that location

Threads Function 1 main (edge.cu:75) 32 conv2d_global (edge.cu:35) conv2d_global (edge.cu:39)

Full MPI support

See GPU and CPU threads from multiple nodes

Some Common Problems

Incorrect logic in (if-statements, calculations)

- Loop iteration to GPU thread analogy threads identified by grid and block indexes
- Solution: Select a thread and step with DDT; look at the local state and shared data
 - Cherry-pick important threads: start, end, a few interior points

Kernel bounds – getting the right grids and blocks

- Incorrect kernel thread boundaries can lead to incomplete results or crashing of the kernel
- Solution: Bugs will often trigger "CUDA memcheck" errors run with DDT and CUDA memory debugging enabled
- Solution: Use DDT's advanced multi-dimensional array viewer to look at data and find the missing indexes

allinea

Current Limitations

- SDK 3.0 is a big leap forward
- SDK and driver limitations
 - Only one GPU can be debugged per O/S (per physical node)
 - Cannot currently read launch failure codes (without breaking your code)
 - Only one warp can be stepped per GPU at any time
 - Cannot debug GPU part of (attach to) an already running job
- Allinea DDT limitations
 - Not yet possible to compare data across GPU threads
 - "Step threads together" not implemented for CUDA threads
- A strong partnership with NVIDIA is helping to define future capabilities